

 Navigation

 	
 index

 	transmutator latest documentation

Transmutator

Transmutator is a general purpose migration framework.
It focuses on automating actions you perform to upgrade (or downgrade) a
product.

Warning

This project is experimental. At this stage, it just describes concepts.
Perhaps the concepts are implemented by some existing tools.

A typical migration for a web service could be:

	ask admin for confirmation

	enable maintenance page

	stop frontends

	backup data

	update configuration

	provision machines (upgrade software)

	migrate databases

	restart frontends

	run smoketests

	disable maintenance page.

Upgrades are migrations

Provisioning is not enough to manage upgrades.
Database migrations are just a part of the upgrade procedure.
We need migration scripts and workflows.

Migration scripts

	Recipes are libraries that provide classes with forward() and backward()
methods.

	Dispatchers manage lists of actions to run and watch/notify stop conditions.

	Migration scripts load, configure and run recipes.

	Collecter grabs the list of unapplied migration scripts.

Migration scripts are small shell scripts that accept standardized arguments:
they “forward” by default, they optionally implement “–backward”. The
language in which scripts are written does not matter.

There is two kind of migration scripts:

	atomic mutations, migrations that focus on one thing;

	orchestration, migrations that focus on running smaller scripts.

An upgrade from a release to another is typically encapsulated in an
orchestration-type script, which itself groups atomic-type scripts.

Migration workflows

Automating everything is hard, sometimes impossible, sometimes unwanted.
A migration procedure is a workflow: it passes from one state to another via
transitions. Most transitions can be automated, but some may require human
interaction.

Example of human interactions:

	setup SSH keys

	update configuration where defaults are not suitable

	review and confirm some actions

	perform actions that have not been automated yet

Iterative deployment development

When you start a project, you do not want to spend days to get the perfect
deployment workflow. In fact, you usually cannot even get a suitable deployment
workflow at first. Partly because you do not know how to deploy things you
have not developed yet. Partly because you want to focus on proof of concepts,
where automated deployment is not top priority.

Transmutator allows you to setup interactive workflows, where you can tell the
user to perform actions you have not automated yet.

Remote-control multiple machines

On distributed architectures, you have to orchestrate migrations on multiple
machines. Transmutator runs high-level migration scripts that use your favorite
remote-control tools, such as fabric or salt.

From DEV to PROD

Migrations are part of the development process. Several developers can
contribute to migrations, concurrently. Transmutator is made to reproduce
migrations over every environments, from DEV to PROD.
The differences between DEV (tends to be monolithic) and PROD (tends to be
distributed) are managed via configuration. Transmutator supposes you manage
architecture as configuration.

Features / workflows / demo

At last, here is implementation... transmutator tries to implement the
concepts above. It is a proof of concept. If you feel something is going wrong,
please tell us ;)

Note

This is kind of a plan for some tests.

Note

All features are not be implemented yet.

	transmutator provides transmute command.

	transmute without arguments runs mutations “forward”.

	transmute reads mutations in mutations directory: mutations folder
in current directory (pwd).

	here is a sample “mutations” folder tree:

mutations
├── 0001_hello_world.py
├── 0040_1234.sh
├── 1.2
│ └── 0093_print_version.sh
├── 1.3
│ └── 0060_print_version.sh
├── development
│ └── 0077_refactoring.py
└── recurrent
 └── 0050_syncdb.sh

	A mutation file must be executable. Else, it is ignored.

	All mutation scripts/binaries implement the mutation interface:

	no arguments means “forward”

	accept --backward argument to run “backward” instead of “forward”

	that’s all for now. Later, additional options such as help may be
added.

	Mutations can be grouped by “release/version”. In the example above:

	0001_hello_world.py and 0040_1234.sh have “no release”.

	1.2/0093_print_version.sh has release “1.2”

	1.3/0060_print_version.sh has release “1.3”

	mutations in development/ have not been released yet, their content
may change during developement.

	mutations in recurrent/ are special kind of mutations, they are to
be executed for every release.

	Mutations are executed in order:

	first ordering criteria is “release/version” groups:
	1.2/0093_print_version.sh is executed before
1.3/0060_print_version.sh

	mutations in development/ are executed at the end. “development” is
a special release, the latest.

	mutations in recurrent/ are considered part of every release, so
they are run for each release.

	then, in a release, mutations are sorted by filename:
	0001_hello_world.py is executed before 0040_1234.sh

	recurrent/0050_syncdb.sh is executed before
1.3/0060_print_version.sh

	Once mutations have been executed, they are not executed again. Except
recurrent and in-development mutations:

	recurrent mutations are executed (forward) for each release

	in-development mutations are always executed. But they are run “backward”
then “forward” (undo/redo).

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	transmutator latest documentation

Index

 Copyright .
 Created using Sphinx 1.3.1.

 search.html

 Navigation

 		
 index

 		transmutator latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.1.

README.html

 Navigation

 		
 index

 		transmutator latest documentation »

Transmutator

Transmutator is a general purpose migration framework.
It focuses on automating actions you perform to upgrade (or downgrade) a
product.

Warning

This project is experimental. At this stage, it just describes concepts.
Perhaps the concepts are implemented by some existing tools.

A typical migration for a web service could be:

		ask admin for confirmation

		enable maintenance page

		stop frontends

		backup data

		update configuration

		provision machines (upgrade software)

		migrate databases

		restart frontends

		run smoketests

		disable maintenance page.

Upgrades are migrations

Provisioning is not enough to manage upgrades.
Database migrations are just a part of the upgrade procedure.
We need migration scripts and workflows.

Migration scripts

		Recipes are libraries that provide classes with forward() and backward()
methods.

		Dispatchers manage lists of actions to run and watch/notify stop conditions.

		Migration scripts load, configure and run recipes.

		Collecter grabs the list of unapplied migration scripts.

Migration scripts are small shell scripts that accept standardized arguments:
they “forward” by default, they optionally implement “–backward”. The
language in which scripts are written does not matter.

There is two kind of migration scripts:

		atomic mutations, migrations that focus on one thing;

		orchestration, migrations that focus on running smaller scripts.

An upgrade from a release to another is typically encapsulated in an
orchestration-type script, which itself groups atomic-type scripts.

Migration workflows

Automating everything is hard, sometimes impossible, sometimes unwanted.
A migration procedure is a workflow: it passes from one state to another via
transitions. Most transitions can be automated, but some may require human
interaction.

Example of human interactions:

		setup SSH keys

		update configuration where defaults are not suitable

		review and confirm some actions

		perform actions that have not been automated yet

Iterative deployment development

When you start a project, you do not want to spend days to get the perfect
deployment workflow. In fact, you usually cannot even get a suitable deployment
workflow at first. Partly because you do not know how to deploy things you
have not developed yet. Partly because you want to focus on proof of concepts,
where automated deployment is not top priority.

Transmutator allows you to setup interactive workflows, where you can tell the
user to perform actions you have not automated yet.

Remote-control multiple machines

On distributed architectures, you have to orchestrate migrations on multiple
machines. Transmutator runs high-level migration scripts that use your favorite
remote-control tools, such as fabric or salt.

From DEV to PROD

Migrations are part of the development process. Several developers can
contribute to migrations, concurrently. Transmutator is made to reproduce
migrations over every environments, from DEV to PROD.
The differences between DEV (tends to be monolithic) and PROD (tends to be
distributed) are managed via configuration. Transmutator supposes you manage
architecture as configuration.

Features / workflows / demo

At last, here is implementation... transmutator tries to implement the
concepts above. It is a proof of concept. If you feel something is going wrong,
please tell us ;)

Note

This is kind of a plan for some tests.

Note

All features are not be implemented yet.

		transmutator provides transmute command.

		transmute without arguments runs mutations “forward”.

		transmute reads mutations in mutations directory: mutations folder
in current directory (pwd).

		here is a sample “mutations” folder tree:

mutations
├── 0001_hello_world.py
├── 0040_1234.sh
├── 1.2
│ └── 0093_print_version.sh
├── 1.3
│ └── 0060_print_version.sh
├── development
│ └── 0077_refactoring.py
└── recurrent
 └── 0050_syncdb.sh

		A mutation file must be executable. Else, it is ignored.

		All mutation scripts/binaries implement the mutation interface:

		no arguments means “forward”

		accept --backward argument to run “backward” instead of “forward”

		that’s all for now. Later, additional options such as help may be
added.

		Mutations can be grouped by “release/version”. In the example above:

		0001_hello_world.py and 0040_1234.sh have “no release”.

		1.2/0093_print_version.sh has release “1.2”

		1.3/0060_print_version.sh has release “1.3”

		mutations in development/ have not been released yet, their content
may change during developement.

		mutations in recurrent/ are special kind of mutations, they are to
be executed for every release.

		Mutations are executed in order:

		first ordering criteria is “release/version” groups:
		1.2/0093_print_version.sh is executed before
1.3/0060_print_version.sh

		mutations in development/ are executed at the end. “development” is
a special release, the latest.

		mutations in recurrent/ are considered part of every release, so
they are run for each release.

		then, in a release, mutations are sorted by filename:
		0001_hello_world.py is executed before 0040_1234.sh

		recurrent/0050_syncdb.sh is executed before
1.3/0060_print_version.sh

		Once mutations have been executed, they are not executed again. Except
recurrent and in-development mutations:

		recurrent mutations are executed (forward) for each release

		in-development mutations are always executed. But they are run “backward”
then “forward” (undo/redo).

 © Copyright .
 Created using Sphinx 1.3.1.

_static/comment-bright.png

CONTRIBUTING.html

 Navigation

 		
 index

 		transmutator latest documentation »

Contributing

This document provides guidelines for people who want to contribute to
transmutator.

Create tickets

Please use the bugtracker [https://github.com/benoitbryon/transmutator/issues] [1] before starting some work:

		check if the bug or feature request has already been filed. It may have been
answered too!

		else create a new ticket.

		if you plan to contribute, tell us, so that we are given an opportunity to
give feedback as soon as possible.

		Then, in your commit messages, reference the ticket with some
refs #TICKET-ID syntax.

Use topic branches

		Work in branches.

		Prefix your branch with the ticket ID corresponding to the issue. As an
example, if you are working on ticket #23 which is about contribute
documentation, name your branch like 23-contribute-doc.

		If you work in a development branch and want to refresh it with changes from
master, please rebase [http://git-scm.com/book/en/Git-Branching-Rebasing] [2] or merge-based rebase [http://tech.novapost.fr/psycho-rebasing-en.html] [3], i.e. do not merge master.

Fork, clone

Clone transmutator repository (adapt to use your own fork):

git clone git@github.com:benoitbryon/transmutator.git
cd transmutator/

Usual actions

The Makefile is the reference card for usual actions in development
environment:

		Install development toolkit with pip [https://pypi.python.org/pypi/pip/] [4]: make develop.

		Run tests with tox [http://tox.testrun.org] [5]: make test.

		Build documentation: make documentation.

		Release project with zest.releaser [https://pypi.python.org/pypi/zest.releaser/] [6]: make release.

		Cleanup local repository: make clean, make distclean and
make maintainer-clean.

See also make help.

Notes & references

		[1]		https://github.com/benoitbryon/transmutator/issues

		[2]		http://git-scm.com/book/en/Git-Branching-Rebasing

		[3]		http://tech.novapost.fr/psycho-rebasing-en.html

		[4]		https://pypi.python.org/pypi/pip/

		[5]		http://tox.testrun.org

		[6]		https://pypi.python.org/pypi/zest.releaser/

 © Copyright .
 Created using Sphinx 1.3.1.

_static/comment.png

_static/up.png

_static/down.png

_static/ajax-loader.gif

_static/plus.png

_static/up-pressed.png

_static/minus.png

_static/comment-close.png

_static/down-pressed.png

_static/file.png

